Conditions for global existence of solutions of ordinary differential, stochastic differential, and parabolic equations
نویسندگان
چکیده
First, we prove a necessary and sufficient condition for global in time existence of all solutions of an ordinary differential equation (ODE). It is a condition of one-sided estimate type that is formulated in terms of so-called proper functions on extended phase space. A generalization of this idea to stochastic differential equations (SDE) and parabolic equations (PE) allows us to prove similar necessary and sufficient conditions for global in time existence of solutions of special sorts: L1-complete solutions of SDE (this means that they belong to a certain functional space of L1 type) and the so-called complete Feller evolution families giving solutions of PE. The general case of equations on noncompact smooth manifolds is under consideration.
منابع مشابه
Necessary and Sufficient Conditions Forglobal-in-time Existence of Solutions Ofordinary, Stochastic, and Parabolicdifferential Equations
We derive necessary and sufficient conditions for global-in-time existence of solutions of ordinary differential, stochastic differential, and parabolic equations. The conditions are formulated in terms of complete Riemannian metrics on extended phase spaces (conditions with two-sided estimates) or in terms of derivatives of proper functions on extended phase spaces (conditions with one-sided e...
متن کاملON THE EXISTENCE OF PERIODIC SOLUTIONS FOR CERTAIN NON-LINEAR DIFFERENTIAL EQUATIONS
Here we consider some non-autonomous ordinary differential equations of order n and present some results and theorems on the existence of periodic solutions for them, which are sufficient conditions, section 1. Also we include generalizations of these results to vector differential equations and examinations of some practical examples by numerical simulation, section 2. For some special cases t...
متن کاملStudy on efficiency of the Adomian decomposition method for stochastic differential equations
Many time-varying phenomena of various fields in science and engineering can be modeled as a stochastic differential equations, so investigation of conditions for existence of solution and obtain the analytical and numerical solutions of them are important. In this paper, the Adomian decomposition method for solution of the stochastic differential equations are improved. Uniqueness and converg...
متن کاملStochastic differential inclusions of semimonotone type in Hilbert spaces
In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...
متن کاملAPPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2004 شماره
صفحات -
تاریخ انتشار 2004